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THE CHOICE OF CELL FACE VELOCITIES IN THE THREE DIMEN-
SIONAL INCOMPRESSIBLE FLOW CALCULATIONS ON
NONORTHOGONAL GRIDS
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The effect of choice of cell face velocities on the solution behaviours in the three dimensional incompressible flow calculations
on nonorthogonal grids are investigated in detail. The calculation schemes based on the curvilinear contravariant and covariant
cell face velccities are developed and are applied to the test problems to assess their relative performances. It is observed that the
accuracy of the converged solution is not affected by the different choice of cell face velocities. However, the scheme based on the
covariant cell face velocities shows better convergence behaviours when the numerical grids are strongly nonorthogonal.
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1. INTRODUCTION

In recent years several calculation methods (Shyy, Tong
and Correa, 1985, Maliska and Raithby, 1984, Rhie and Chow,
1983, Karki and Patankar, 1988) which employ the nonorth-
ogonal body-fitted coordinates have been developed for a
better resolution of fluid flow and heat transfer in domains of
irregular boundaries. The development of an efficient calcu-
lation method which provides better convergence and accu-
racy is particularly important for the practical three dimen-
sional calculations. In the SIMPLE family (Patankar, 1980)
of calculation methods which are now predominantly used in
the incompressible calculations, the solution behaviours are
greatly influenced by the treatment of pressure or pressure
correction equations. When the numerical grids are nonorth-
ogonal, the derivation of pressure or pressure correction
equations is closely related to the choice of cell face veloc-
ities. Thus, a proper treatment of pressure and velocity
coupling through an adequate choice of cell face velocities is
very important for the development of a better calculation
method on nonorthogonal grids.

The cell face velocities in the nonorthogonal coordinate
system can be either the Cartesian velocity components or the
curvilinear contravariant or covariant velocity components.
The use of Cartesian velocity components as cell face veloc-
ities requires more computer storages and more complicated
programings since all the Cartesian velocity components
should be stored at each of the cell face locations in order to
properly compute the mass fluxes. These disadvantages are
particularly grave in the practical three dimensional calcula-
tions. The mass fluxes at the cell face locations may be
adequately evaluated by employing the contravariant veloc-
ity components as cell face velocities.

However, the rnomentum equations for the contravariant
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velocity components contain the nonorthogonal pressure
gradient terms and the resulting pressure or pressure correc-
tion equations are very complicated and may lack in diagonal
dominance when the numerical grids are strongly nonorth-
ogonal. In most of the previous calculation methods, the
nonorthogonal pressure correction terms are neglected to
provide a simple and diagonal dominant pressure correction
equation. However, this practice may cause the undesired
stability problems when the numerical grids are strongly
nonorthogonal and can not be efficiently implemented in the
SIMPLER algorithm of Patankar(1980) in which the solution
of exact pressure equation is required. These difficulties can
be avoided if one uses the curvilinear covariant velocity
components as cell face velocities since the momentum equa-
tions for the curvilinear covariant velocity components do
not contain the cross derivative pressure terms. The scheme
employing the curvilinear covariant cell face velocities
always provides simple and diagonal dominant pressure and
pressure correction equations. However, this practice is not
free of difficulties since parts of mass fluxes at the cell face
locations should be evaluated through the interpolation of
neighbouring velocities. The resulting pressure correction
equation involves an additional mass source term which
becomes larger with the increase of grid nonorthogonality
and hampers the convergence to the machine accuracy.

The objective of the present study is to investigate how the
different choice of cell face velocities affects the convergence
behaviours and the accuracy of solution in the three dimen-
sional incompressible flow calculations on nonorthogonal
grids. As a contemporary study, the present authors(1992)
have performed similar investigations for the two dimen-
sional case. Such an effort is further extended to the three
dimensional situation in the present study.

The modified Rhie and Chow’s scheme (1983) is employed
for the present purpose. The original scheme has been
modified to remove the relaxation factor dependency of the
converged solutions and to take into account the cross deriva-
tive pressure terms in evaluating the cell face contravariant
velocity components. In this scheme, the momentum equa-
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tions are solved at the cell-centered locations using the
Cartesian velocity components as dependent variables and
the curvilinear cell face velocities are obtained explicitly
through the interpolation and algebraic manipulation of the
momentum equations for the neighbouring cell-centered Car-
tesian velocity components rather than solving them implicit-
ly at the cell face locations. This practice removes all the
undesiered problems associated with employing the cur-
vilinear velocity components as dependent variables for the
momentum equations.

Two computer codes each based on the contravariant and
the covariant cell face velocities are developed and are
applied to the test problems to assess their relative perfor-
mances. The convergence behaviours and the accuracy of the
converged solution are examined varying the degree of
nonorthogonality of numerical grids.

2. FINITE VOLUME FORMULATION

2.1 Governing Equations

The continuity equation and the conservation form of
transport equation for a general dependent variable ¢ in the
generalized coordinate system x’ can be written as follows

a —

axj(PUj)—O (1)
d y_dep ;00 _

axj(pU_]¢ ]Dm axm) JSe (2)

where the contravariant velocity components U/, and the
geometric coefficients D,’ are defined as

U = bkjuh (3)

ij: bkjbkm (4)
and the geometric coefficients b/ represent the cofactors of
dy'/dx’ in the Jacobian matrix of the coordinate transforma-
tion y'=y'(x’) and J is the determinant of the Jacobian
matrix. In these equations, p is the density of fluid, I’ is the
diffusion coefficient of varible ¢, u, are the Cartesian veloc-
ity components in y‘ directions and S, denotes the source
term of variable ¢.

2.2 Discretization of Transport Equations

The computational domain is subdivided into a finite num-
ber of hexahedral control volumes as shown in Fig. 1 and all
the variables are stored at the geometric center of each

Fig. 1 A typical control volume

control volume cell. The discretization of transport equations
is performed in the physical solution domain following the
finite volume approach. The governing equations are inte-
grated over the control volume and the convection terms and
the normal diffusion terms are approximated by the power-
law profiles of Patankar(1980) and the. cross derivative
diffusion terms are evaluated explicitly as an additional
source term. The resulting algebraic equations for a variable
¢ can be written in the following general form.

Ap¢p :A£¢E -+ Aw¢w+AN¢N +A.s¢s+Ar¢7’+A3¢s+ bp

(5)

where
Ap=As+Aw+Ax+As+Ar+Ap—SE4V (6)
be=Ss4V + 52 (7

and S} is the source term of a variable ¢ arising due to the
nonorthogonality of numerical grid and S§, S§ are the linear-
ized source terms.

3. MOMENTUM INTERPOLATION METHOD

In the present modified Rhie and Chow’s scheme, the
momentum equations are solved implicitly at the cell-
centered locations using the Cartesian velocity components
as dependent variables. The discretized form of momentum
equations for the cell-centered Cartesian velocity components
u; can be written as follows with the under-relaxation factor
expressed explicitly

() p= (Hu)pt+ (Duzl')P(Pw—Pe) + (Dzz)P(Ps‘Pﬂ)

+(Du)p(Po—P)+(1—a) (Ve (8)

where
Hujza(%}Aiﬁ, uf®+b,,)/ A¥ 9)
v=abi/ A¥ (10)

and « is the under-relaxation factor and the superscript (%
—1) denotes the previous iteration level.

In order to compute the mass fluxes through the cell faces,
it is necessary to compute the velocities at the cell face
location. The discretized form of momentum equations for
the cell face Cartesian velocity components, for example at
the east face, can be written as follows

(Zﬁ)ez (Hu:) et (Dtln) e(PP“PE) + (Duyz) (Pse"'“Pne)

+ (D) e (Poe~ Py + (1—0a) (u} Ve (11)
In the conventional staggered grid method, above momentum
equations for the cell face velocity components are implicitly
solved with algebraic coefficients evaluated at the cell face
locations. In the present modified Rhie and Chow’s scheme,
these cell face Cartesian velocity components are obtained
through the interpolation of momentum equations for the
neighbouring cell centered Cartesian velocity components,
Eq. (8). Following assumptions are introduced to evaluate
these cell face velocites, for example «; at the east cell face.

1/ (AE) = f&/ (AF) e+ (1= ) [ (A¥ (12)

(Hm)ezf;(Hul)E'*’(l‘*fe*) (Hza))’ (13)
where f; is the geometric interpolation factor defined in
terms of distances between nodal points.

fot="Pe/(Pe+¢E) (14)
Similar assumptions can be introduced for the evaluation of
the velocity components at the other cell face locations. The
accuracy of these assumptions may be affected by the flow
situation and the grid nonorthogonality unless the numerical
grids are fine enough.
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4. PRESSURE CORRECTION SCHEME

In the present study, the coupling between the continuity
and the momentum equations is effected using the SIMPLE
algorithm of Patankar(1980). Followings are the details of
pressure correction sheme in the modified Rhie and Chow’s
scheme associated with employing different cell face veloc-
ities.

4.1 Contravariant Cell Face Velocities Based Scheme
The integrated continuity equation for a control volume
cell around a grid point P, shown in Fig. 1, can be written as
(o) e— (UL w+ (pUs) n— () s+ (0Us) ¢+ — (pUs) »=0

(15)

The momentum equations for the contravariant cell face
velocity components can be derived by substituting the
momentum equations for the cell face Cartesian velocity
components, Eq. (11), to the relations between two velocity
components, Eq. (3). The resulting equations are as follows.

(D)) e=(T1) e+ (Du}) e (Po— Pe) + (Do?) .

(lzsefpne)“F(DU?)e(Pbe*Pte) (16)
(UZ) n= (UZ) nt (DUZI)H(Pwn'_Pen) + (DUZZ) n
(EP—PN}+(DUg)n(an—P:n) 17)
(Us) ¢=(Us) e+ (Dus) ¢ (Pue —Per) + (D) .
(Psz*Pnz) + (DU?)t(,PP'PT) (18)
where
Ui=biHu+ (1—a) U (19)
U,-j: bkiDui (20)

It is noted that these cell face contravariant velocity compo-
nents are evaluated explicitly using the assumptions given in
Eqgs. (12) ~(13) with the geometric coefficients evaluated at
the cell face locations.

The velocity components obtained by Eqgs. (16) ~ (18) will,
in general, not satisfy the mass conservation unless the
pressure field is correct. These starred velocity components
are corrected to satisfy the continuity equation by following
velocity correction equations.

(AU1)e=(UJ—Ux*)e:(Du;I)e(PP’—PE') 2D
(AU n= (U= Uz) = (Du?) n (Pp'— Py’) (22)
(A(]S)t:(Ua“Us‘)tz(DUS)t(PP/—PT’) (23)

where p’ is the pressure correction.

The nonorthogonal pressure correction terms are neglected
to obtain a simple and diagonal dominant pressure correction
equation. Substitution of these velocity correction formula
into the continuity equation, Eq. (15), results in an equation
for pressure correction.

AgPp=£Ar7anb+bN (24)
where
bv= (PUJ*) w— (PU") e+ (PUZ')S— (p[fz*) nt (PUa*) b
—(pUs") . (25)

One can notice that the present contravariant cell face
velocities based scheme is slightly different from that report-
ed in Peric(1985).

4.2 Covariant Cell Face Velocities Based Scheme
The physical covariant velocity components V; are related
to the Cartesian velocity components y; as

Vi= Gpe it = uj%/(gﬁ) 2 (ii not summation) (26)

where &,: are the unit vectors in x* directions and the geomet-
ric coefficients g are defined as

gli= Oy Ot (ii not summation) (27)
ax" ax"
The contravariant velocity components U; can be expressed

in terms of the covariant velocity components V; as
Ui=a;V; (28)
where @, are the geometric coefficients defined as

az-j:%D}/(g”‘) Lz (jj not summation) (29)
With these relations, the continuity equation can be rewritten
as

(,00’11 Vi) e— (0&'11 et (,00’22 Va) n— (,0(1’22 Va)s

+ (pass V) e — (pass V) o= bro (30)

where buo is the nonorthogonal mass source term arising due
to the choice of the covariant velocity components as cell
face velocities and is defined as

brno= (Pa’lz Va+ oais Va) w— (,0&’12 Va+ pais Va)e
+ (paa Vi+ paes Vi) s — (pazs Vi + 0azs Va) n (31)
+ (Pa’al V1+00’32 Va) o — (0(2’31 14 + oas:z Va) ¢
The momentum equations for the covariant cell face veloc-
ity components can be derived through the algebraic manipu-
lation of equations like Eq. (11) and Eq. (26).

(VD) e= (V1) o+ (Dv1) o (Pp— Pe) (32)

(I/Z)HS(I’{Z)H+(DV2)H(PP~PN) (33)

(Va)e=(V3) ¢+ (Dv3) e (Pp— Pr) (34)
where

171:]1%,*‘;;’ /(g™ ¥+ (1—a) V7' (ii not summation)
(35)
Dvi.:Du,"‘gi:,-/(g”)"2 (il not summation)
(36)
The correction equations for the covariant velocity compo-
nents can be written as

@V e=(Vi—= V") e=(Dv1) (Pp'— Pr) (37)
(AVa)p= (Vo= V5") u=(Dv2) n (Pp— Py') (38)
(dVa) = (Va— V3") ;= (Dv.) « (Ps— P} (39)

The pressure correction equation can be derived by substitut-
ing these velocity correction equations to the continuity
equation, Eq. (30),

AﬁP;’FﬂZb!AEb no+ et bro (40)
where
be= (pan Vi*) w— (pan V1*) o+ (0a22 V") s— (022 V) n
+ (pass V') 5 — (pass V5*) ¢ (41)

After solving the pressure correction equation, the pressure
and the cell-centered Cartesian velocity components are
updated by following equations using the assumption of
linearly varying pressure field.

P=P*+ a,P’ (42)
(U p="(ul) p+ (Du) p (Pio— P) + (D) p (P — P;)
+ (DB p (Py— P)) (43)

The optimal relaxation factor by Peric(1985), ar=1—a,, is
employed for most of the present calculations.

5. APPLICATIONS TO TEST PROBLEMS

Two computer codes based on the contravariant [EL-
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CON3D] and the covariant [ELCOV3D] cell face velocities
are developed and are applied to the test problems to investi-
gate their relative performances. The test problems include ;
fully developed laminar flow in a straight square duct and
laminar flow in a lid-driven inclined cubic cavity. The conver-
gence behaviours and the accuracy of the converged solution
are examined varying the degree of the grid nonorth-
ogonality. Before conducting these numerical experiments,
both codes have been validated through the applications to
several test problems such as laminar flows in the ducts of 90
degree and 180 degree bend with circular and square cross
sections, and laminar flow in a cubic cavity. Since the results
of these problems are not relevant to the objective of the
present study, they are not reported here.

5.1 Fully Developed Laminar Flow in a Square Duct

A fully developed laminar flow in a square duct, schemati-
cally shown in Fig. 2, is solved varying the degree of nonorth-
ogonality of numerical grid to investigate how the different
choice of cell face velocities influences the convergence and
accuracy of the solution. These numerical experiments also
provide information on the influence of the treatment of
cross-derivative diffusion and pressure terms on the accuracy
and stability of the scheme. The uniform 21*21*21 grids are
generated within a quarter of the duct in which the longitudi-
nal solution domain is extended to five times the half width of
duct. Exact fully developed profiles in White(1974) are pre-
scribed at the inlet and zero axial gradient conditions are
imposed at the exit. Four cases with different inclinations (3
=90, 60, 45, 30) are studied. The Reynolds number based on
the half width of duct and the bulk velocity is 100 and the
relaxation factors used in the present calculations are a,=a»
=a,=0.7 and ap,=0.3.

Table 1 shows the predicted maximum percentage errors
for each case where the maximum error E,,, is defined as E
max=|tcat— Uexact|max/ tUmax @A0d  Umax iS the maximum inlet
velocity. We can notice that the accuracy of the converged
solution is not affected by the different choice of cell face
velocities. The maximum percentage error becomes larger
with the increase of grid nonorthogonality. However, both
codes result in accurate enough solutions even in strongly
nonorthogonal grid situations. It is also found that most of
the maximum errors are occurred at the last few stations
near the exit and except for these regions, the maximum
errors are found to be less than 19%. These observations
indicate that the predicted numerical errors are somewhat
related to the treatrment of boundary conditions at the exit
rather than to the numerical scheme itself.

Fig. 3 show the convergence histories for four cases with

outlel
S

B

Fig. 2 Fully developed laminar flow in a square duct

Table 1 Maximum percentage errors of u-velocity component

B8=90 B=160 B=45 B8=30
ELCON3D| 0.176% 0.723% 1.088% 1.988%
ELCOV3D| 0.176% 0.722% 1.087% 1.988%

different inclinations. It is noted that there exist strong
wiggles in the convergence histories. When these convergence
behaviours are compared with those for the inclined cubic
cavity flows shown in the next section, these wiggles are
somewhat related to the treatment of outflow boundary
conditions. The same outflow boundary conditions commonly
employed in the well known codes like TEACH or EL2D,
EL3D are used in the present calculations. We have also
found that these wiggles are related to the relaxation factors
used. Our numerical experiments show that the magnitude
and the frequency of the wiggles are changed when only the
relaxation factor for the pressure correction(q,) is slightly
changed. Fig. 3(d) shows that wiggle free solutions can be
obtained depending on the flow situation and relaxation
factors used (ELCOV3D, 3=30, a=ar=a»=0.7 and ap=
0.2). However, as far as the convergence is reached, the
wiggle in the convergence histories is not an important
parameter for the overall solution procedure.

These figures show that the convergence rate is significant-
ly affected by the different choice of the cell face velocities as
well as the degree of grid nonorthogonality. When the numer-
ical grids are orthogonal (£=90), both codes result in the
same convergence histories as expected. However, as the grid
nonorthogonality becomes significant, the differences in con-
vergence rates become more pronounced. The ELCOV3D
code based on the covariant cell face velocities always shows
better convergence behaviours. The ELCON3D code based on
the contravariant cell face velocities causes stability prob-
lems when the numerical grids are strongly nonorthogonal (5
==30). The convergence is achieved only in a limited range of

relaxation factors (@,<0.2 when a,=a,=a,=0.7). The
convergence histories shown in Fig. 3(d) are for the case of
= =a,=0.7 and @,=0.2. Peric (1990) has shown that the
poor performances of the contravariant cell face velocities
based scheme in strongly nonorthogonal grid situations are
due to the neglection of the cross derivative pressure correc-
tion terms in the contravariant velocity correction equations,
Egs.(21) ~ (23). However, the inclusion of the nonorthogonal
pressure correction terms leads to a very complicated pres-
sure correction equation, especially in the three dimensional
situation.

5.2 Laminar Flow in a Lid-Driven Cubic Cavity

Laminar flows in a cubic cavity with a moving top wall and
inclined side walls, schematically shown in Fig. 4, is solved
for Reynols numbers of 100 and 1000 to investigate the
accuracy of the schemes and the effect of choice of cell face
velocities and grid nonorthogonality on the convergence
behaviours.

First, laminar flows in a cubic cavity without inclination (8
=9() is solved employing two different numerical grids (32*
32*32,  42*42*42) to examine the accuracy of the schemes.
Fig. 5 show the predicted centerline velocity distributions at
the center plane together with the calculations by Rosenfeld
(1991) and other results given in Rosenfeld (1991). Both codes
result in nearly the same converged solutions which are not
discernible in the plottings. Thus, only the results by the
ELCOV3D code is presented. Good agreements are obtaind
for both Reynolds numbers except a slight deviation is obser-
ved when the Reynolds number is high (Re= 1000) and the
numerical grids are coarse (32*32*32). This may be due to
the use of lower order scheme, power-law scheme, in the
present study. It is also noted that these errors are reduced
with a little grid refinement (42*42*42),
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Fig. 3 Convergence histories for duct flows

The effect of choice of cell face velocities on the conver-
gence behaviours are also investigated in this test problem.
Like the previous test problem, four cases with different

Fig. 4 Laminar flow in a lid-driven cubic cavity

inclinations (3=90, 60, 45, 30) are studied employing 21*21*
21 uniform numerical grids. Two different Reynolds numbers,
100 and 1000, based on the wall velocity and the width of top
wall are employed to investigate the Reynolds number effect
on the solution behaviours.

Fig. 6 show the convergence histories of the sum of the
normalized mass residuals of pressure correction equation for
four cases with different inclinations when the Reynolds
number is 100. Unlike the previous test problem, the differ-
ences in the convergence rates are not pronounced in this
problem although some differences are observed when the
numerical grids are strongly nonorthogonal (8=30). These
observations show that the relative convergence behaviours
associated with employing different cell face velocities are a
little problem dependent. We can also observe that these
convergence behaviours are a little different from those
reported in the present author’s earlier work (1992) for the
two dimensional inclined cavity problem. The differences in
convergence rates will be more pronounced if the geometric
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Fig. 7 Convergence histories for cavity flows : Re=1000

shape of the cavity is inclined in two directions. However, the
solution by the ELCOV3D code generally shows better con-
vergence behaviours. As shown in Fig. 7, these solution
behaviours are not much altered even though the Reynolds
number in increased one order higher to Re=1000. The
differences in convergence rates are a little more pronounced
in this case.

Fig. 6 show that the solution by the ELCOV3D code does
not converge to the machine accuracy when the numerical
grids are nonorthogonal while the solution by the ELCON3D
code always converges to the machine accuracy. This defi-
ciency of the ELCOV3D code is originated from the incom-
plete convergence of the nonorthogonal mass source term,
bno in the pressure correction equation, Eq. (40), which is
usually obtained through the interpolation of neighbouring
velocities. The amount of the incomplete convergence of the
nonorthogonal mass source term becomes larger with the
increase of grid nonorthogonality. In usual cases, the magni-
tude of the incomplete convergence is far smaller than the

usual accepted convergence criteria even in a strongly nonor-
thogonal situation and does not influence the accuracy of the
final converged solutions as shown in Table 1. However,
depending on the flow situation and gird nonorthogonality,
there exist possibilities that this additional nonorthogonal
mass source term, bo- becomes so large that the soluticn fails
to converge (but not diverge). A typical example of this case
is shown in Fig. 7(d). Our numerical experiments altering the
relaxation factors do not change this abnormal convergence
behaviours. This fact may be a serious drawback of the
covariant cell face velocities based scheme to question that
this scheme can be used in the general purpose codes.

6. CONCLUSIONS

Three dimensional calculation procedures for incompress-
ible flows in complex geometries based on the modified Rhie
and Chow’s scheme with different cell face velocities are
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presented. The relative performances between the scheme
based on the contravariant cell face velocities and the scheme
based on the covariant cell face velocities are examined
through the applications to the test problems. Following
conclusions emerge from these numerical experiments.

(1) The accuracy of the converged solution is not affected
by the different choice of cell face velocities.

(2) As far as convegence is reached, in general, better
convergence behaviours are observed when the covariant
velocity components are selected as cell face velocities, espe-
cially in the strongly nonorthogonal grid situations.

(3) The solutions by the scheme based on the covariant
cell face velocities do not converge to the machine accuracy
when the numerical grids are nonorthogonal due to the exis-
tence of the additional nonorthogonal mass source term. In
usual cases, the magnitude of the incomplete convergence is
far smaller than the usual accepted convergence criteria even
in a strongly nonorthogonal grid situation and does not influ-
ence the accuracy of the final converged solutions. However,
there exist possiblilities that this additional nonorthogonal
mass source term becomes too large to reach the conver-
gence.
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